ClassicalR-matrix theory for bi-Hamiltonian field systems
نویسندگان
چکیده
منابع مشابه
Quantum Bi-Hamiltonian Systems
We define quantum bi-Hamiltonian systems, by analogy with the classical case, as derivations in operator algebras which are inner derivations with respect to two compatible associative structures. We find such structures by means of the associative version of Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.
متن کاملBi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
متن کاملCompletely Integrable Bi-hamiltonian Systems
We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...
متن کاملSingularities of Bi-Hamiltonian Systems
We study the relationship between singularities of bi-Hamiltonian systems and algebraic properties of compatible Poisson brackets. As the main tool, we introduce the notion of linearization of a Poisson pencil. From the algebraic viewpoint, a linearized Poisson pencil can be understood as a Lie algebra with a fixed 2-cocycle. In terms of such linearizations, we give a criterion for non-degenera...
متن کاملQuantization of bi-Hamiltonian systems
In 1975, one of the present authors 1 showed how to obtain the quantized levels of the nonlinear Schrodinger equation using the action-angle variables (canonical coordinates) of the AKNS scattering data. The symplectic form used to effect the reduction to canonical coordinates was based on the standard Hamiltonian structure for the nonlinear Schrooinger equation. The method used was a nonlinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2009
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/42/40/404002